В июле 1969 года едва ли кто-то мог усомниться в том, что маленький шаг Нила Армстронга — со ступени спускаемого аппарата на лунный грунт — стал огромным скачком для всего человечества. Самым смелым писателям уже грезились стеклянные купола лунных городов и новый Дикий Запад в поясе астероидов — с ордами старателей, добывающих минералы. Авторы менее романтичные, взяв за основу реальный опыт колонизации Антарктиды, описывали сеть исследовательских баз в лунных кратерах и ржавых пустынях Марса.
Аналогия с Антарктидой действительно казалась убедительной. Но что-то пошло не так.
База на Луне
Сравнивать Антарктиду с Луной — гиблое дело. И вовсе не потому, что Луна очень далеко и там совершенно нет воздуха. Связанные с этим затруднения считались преодолимыми ещё полвека назад. Просто большая часть исследований возле Южного полюса имеет прикладное, а в некоторых случаях даже стратегическое значение. Луна же пока представляет чисто академический интерес. И он настолько мал, что в середине 70-х годов прошлого века в её исследованиях наступил длительный перерыв. Рассматривая в сверх-чёткие телескопы поверхность ближайшего к нам небесного тела, астрономы не находили там решительно ничего интересного.
Не менее важна и разница в характере научной работы. В Антарктике исследуют в первую очередь процессы, протекающие в ледовом панцире, атмосфере и магнитосфере. Изучение процесса предполагает регулярные измерения, а для этого нужны постоянные базы. На Луне же вообще ничего не происходит. Слой реголита (спёкшейся под воздействием жёстких излучений космической пыли) растёт слишком медленно, чтобы наблюдать его в реальном времени.
Тем не менее в истории освоения Луны и Антарктиды есть явные параллели. После «престижного» этапа, когда Южный полюс рассматривался только как точка, в которую любой ценой необходимо вонзить древко флага, к Антарктике надолго потеряли интерес. Затем наступила фаза первых научных экспедиций, совершивших неожиданные и громкие открытия: оказалось, что подо льдом по извилистым тоннелям текут реки, а в глубине континента есть таинственные каменные оазисы…
И Луна, сыграв роль приза в состязании великих держав, пережила десятилетия забвения. Но уже в XXI веке, когда за первым, крайне поверхностным этапом изучения последовал второй, более продуманный, поразительные открытия не заставили себя ждать. Оказалось, что на спутнике Земли в недоступных солнечным лучам приполярных кратерах есть вода! Причём древняя, ещё входившая в состав протопланетного диска, из которого образовалась Земля. Такая вода — помимо того, что она имеет огромную историческую ценность, — может многое рассказать о составе первичных океанов нашей планеты.
Полярные кратеры, температура в которых всегда остаётся близкой к абсолютному нулю, могут оказаться ещё и идеальным местом для размещения инфракрасного телескопа, способного «видеть» очень холодные и почти не освещённые космические тела на границе Солнечной системы. Вот и ответ на вопрос, зачем нам нужна база на Луне!
Мысль использовать лунную воду для нужд базы выглядит соблазнительно, но в этом едва ли есть смысл. Добыча и переработка содержащей лёд породы с помощью доставленного с Земли оборудования наверняка обойдётся дороже, чем доставка ресурсов с Земли для двух-четырёх человек (NASA/GSFC/Arizona State University)
Технологии не стоят на месте, и если в 1960-х для отправки астронавтов на Луну требовалась ракета массой почти 3000 тонн, то теперь можно обойтись ракетами в полтора раза легче. Сегодня возможен более быстрый, дешёвый и безопасный «прямой» перелёт — без разделения и последующей стыковки на лунной орбите посадочного и возвращаемого модулей, как делалось в рамках программы «Аполлон». И тяжёлых ракет понадобится совсем немного: база не должна быть более масштабным сооружением, чем давно и плодотворно работающая на орбите МКС. Затевать на Луне капитальное строительство нецелесообразно. Устройство форпоста будет модульным, как у орбитальной станции, — с той лишь разницей, что стыковать модули необходимости нет.
Если ограничиться отработанными в 1980-х годах 2000-тонными РН, то после посадки на Луну каждый модуль будет иметь массу около 20 тонн. Шестая её часть придётся на опоры, двигатели и опустошённые во время торможения топливные баки. Останутся 17 тонн полезной нагрузки — вполне хватит на двухместный корабль с достаточным для возвращения на Землю запасом горючего. В тесных пилотируемых модулях персонал будет прибывать на Луну и покидать её. А жить и работать космонавты смогут в относительно комфортных жилых модулях, по объёму (80–100 кубометров) сравнимых с первыми советскими орбитальными станциями «Салют».
Помимо одного-двух жилых модулей, базе понадобится ещё и модуль энергетический — с ядерным реактором. Солнечные батареи бесполезны на дне полярного кратера. Сажать этот модуль, конечно же, лучше подальше от остальных и за какой-нибудь естественной преградой.
Возможно, нужен будет специальный интеграционный модуль с катушками проводов, по которым электроэнергия будет передаваться от реактора к прочим модулям базы, в число которых непременно войдут инфракрасный телескоп и буровая установка. Ведь лёд должен залегать под слоем реголита толщиной от одного до восьми метров. Потребуются ещё грузовые модули для доставки припасов и техники и как минимум один межпланетный рефрижератор для отправки добытого льда на Землю.
Ценой четырёх-шести пусков тяжёлых РН в год деятельность базы можно будет поддерживать несколько лет. Потом в реакторе выгорит уран, телескоп устареет, а механизм буровой установки безнадёжно заклинит смятым тюбиком из-под борща. Конечно, можно доставить с Земли другую… только зачем? Первоначальная программа исследований наверняка будет выполнена, а если появятся новые идеи, то и базу разумнее создать новую — там, где нераскрытых пока тайн больше, а мусора, соответственно, меньше.
Человек на Марсе
Сейчас, когда возможности автоматики стремительно растут, будущее пилотируемой космонавтики вызывает вопросы. Тем не менее в обозримой перспективе полёты с экипажем останутся экономически оправданными. На орбите космонавты выполняют функции наладчиков, ремонтников и лаборантов. Регулярное техническое обслуживание приборов, возможность настройки, устранения неполадок и многократного использования одного устройства в разных схемах позволяют сделать эксплуатацию оборудования более эффективной.
Вторая причина отправлять человека в космос связана со скоростью связи. Задержка сигнала между Землёй и Луной — меньше двух секунд. Но и это очень затрудняло управление луноходами. До Марса же даже в момент максимального сближения свет идёт три минуты. Кроме того, мощность передатчика межпланетной станции не может быть велика. Приходящий с космического расстояния сигнал слаб и тонет в шумах. Его восстановление и расшифровка требуют колоссальных вычислительных мощностей и занимают уйму времени. А находящийся поблизости оператор сможет с помощью дрона обследовать большую территорию и отсматривать приходящую с камер автомата «картинку» в реальном времени. Фокусируя аппаратуру на интересных деталях, человек соберёт в 10 или даже в 100 раз больше информации, чем робот.
Пилотируемая экспедиция на Марс имеет смысл. Но сперва нужно создать электроядерный (плазменный) двигатель, разработки которого сейчас ведутся в РФ и США.
При наличии реактора мощностью 4 мегаватт можно доставить на Марс трёх человек за 140 суток на корабле массой около 150 тонн. На припасы и полезную нагрузку придётся 20–25 тонн, а на гелий, который будет служить рабочим телом двигателя, всего 40 тонн. Расходуя по 140 килограммов газа в день, плазмолёт сможет двигаться с крошечным, но постоянным ускорением. Причём увеличивать скорость, сокращая общую массу корабля или повышая мощность двигателя, смысла нет. Оптимальная с точки зрения небесной механики продолжительность миссии — 14 месяцев — останется прежней.
Корабль массой 150 тонн, в принципе, можно полностью подготовить к полёту на Земле и вывести на орбиту уже с экипажем на борту. Но это едва ли оправданно, так как рассчитанный на 10 или 20 лет эксплуатации (реактор потребуется периодически обслуживать) аппарат должен быть приспособлен именно к заправке и погрузке в космосе.
Из-за более сильной гравитации и наличия атмосферы взлететь с Марса значительно сложнее, чем с Луны. Но если лунный пилотируемый модуль направится сразу на Землю, то марсианскому достаточно выйти на низкую орбиту, где его подберёт корабль. С учётом этого можно создать посадочный модуль массой не более 25 тонн — а значит, доставка человека на Марс вполне осуществима. Хотя программу исследований придётся сократить до минимума: посадка, произнесение исторических реплик, установка флага, фотосессия, сбор камешков на память и поспешный отлёт. Едва ли стоит строить электроядерный крейсер только для этого.
Как минимум первая экспедиция (а единственный плазмолёт позволит отправить не меньше пяти) должна полететь не на Марс, а к Марсу. Полезную нагрузку при этом составит кассета с орбитальными и спускаемыми аппаратами. Спутники займутся разведкой, определяя точки, куда стоит высадить марсоходы и куда затем отправятся миниатюрные челноки — для подъёма на орбиту капсул с собранными образцами грунта.
Поскольку экипаж из трёх человек не сумеет эффективно управлять большим количеством дронов, после первой экспедиции в околомарсианском пространстве останется сколько-то неиспользованных аппаратов. Задействовать их, пусть и с куда меньшим эффектом, можно будет и с Земли. Если стратегической целью останется именно высадка человека, в последующих миссиях полезную нагрузку составит сначала обитаемый модуль, потом грузовой — с припасами и оборудованием. И только в последнюю очередь на орбиту Марса будет доставлен посадочный аппарат.
Предварительная разведка дронами, управляемыми с орбиты, и создание временной базы как минимум из двух служебных модулей позволят произвести высадку там, где найдётся нечто интересное и требующее особой аккуратности при изучении. Выполнять тонкие манипуляции киркой и лопатой, слишком ответственные для того, чтобы поручить их роботам, космонавты смогут в течение нескольких недель.
Термоядерная эпоха
Главным недостатком плазменного двигателя, пожалуй, окажется его бесполезность для чего-либо, кроме исследований Марса. Можно ещё слетать к Венере, даже к Меркурию, если кондиционеры позволят, но Юпитер уже слишком далеко. Экспедиция продлится около четырёх лет и потребует огромных затрат.
На земной орбите к кораблю придётся стыковать дополнительные баки с гелием и ядерные ускорители для разгона. Да и самих кораблей понадобится минимум два: первый доставит экипаж на место, второй, заранее отправленный к краю гравитационной ямы Юпитера, эвакуирует экспедицию. А если ставить перед миссией серьёзные исследовательские цели — изучение атмосферы Юпитера с низкой орбиты и получение образцов льда с Европы и Ганимеда, — потребуется ещё и третий корабль: транспортёр автоматических станций.
Смотрите также
Новости партнеров